Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Yao-Cheng Shi* and Hong-Jian Cheng

School of Chemistry, Yangzhou University, 130 XiMenWai Street, Yangzhou 225002, People's
Republic of China

Correspondence e-mail: yzssyc@yzcn.net

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.039$
$w R$ factor $=0.130$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(Z)-1-Ferrocenyl-3-hydroxy-3-(2-pyridyl)-prop-2-en-1-one

The title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}\right)\right]$, has been synthesized by the Claisen condensation reaction of acetylferrocene and ethyl picolinate in the presence of sodium ethoxide. The enone structure is stabilized by a strong $[\mathrm{OH} \cdots \mathrm{O}=\mathrm{C}]$ intramolecular hydrogen bond.

Comment

Enaminones are important ligands in coordination chemistry (Doherty et al., 1999; Kim et al., 2001; Li et al., 2004). In continuation of our investigation of the chemistry of ferrocenyl enaminones, we have prepared the title compound, (I), as an intermediate, via the Claisen condensation of acetylferrocene and ethyl picolinate (Shi et al., 2004, 2005).

(I)

Compound (I) has been shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy to exist in solution in the enol and not the keto form. IR spectroscopy shows only the enol form in the solid state; this has been further confirmed in the present study of its crystal structure (Fig. 1).

As also noted in the related compound 1-ferrocenyl-3-hydroxylbut-2-en-1-one, (II) (Bell et al., 1992), the $\mathrm{O}=\mathrm{C}-$ $\mathrm{C}=\mathrm{C}-\mathrm{O}$ fragment of the molecule of (I) is planar. The bond lengths indicate electron delocalization (Gilli et al., 2000). The $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{O}$ plane is twisted with respect to the pyridyl

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Received 19 September 2005 Accepted 21 September 2005 Online 28 September 2005

Figure 2
A packing diagram for (I). Dashed lines indicate hydrogen bonds.
and cyclopentadienyl rings by 3.3 (2) and $9.4(2)^{\circ}$, respectively. The two cyclopentadienyl rings in the ferrocenyl group are parallel [dihedral angle $1.5(3)^{\circ}$] and adopt a staggered conformation. The $\mathrm{C} 13-\mathrm{C} 14$ bond, which is typical of a single bond $\left(\mathrm{Csp}^{2}-\mathrm{Csp}^{2}\right)$, suggests that the pyridyl ring is not involved in the conjugation of the $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{O}$ group.

Unlike (II), as well as the intramolecular hydrogen bond $[\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}]$, intermolecular hydrogen bonds $[\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}]$ are also present in the crystal structure of (I) (Fig. 2, Table 2).

Experimental

The title compound was synthesized by refluxing a tetrahydrofuran solution of acetylferrocene and ethyl picolinate in the presence of sodium ethoxide (1:1:1) for 4 h , as described previously (Shi et al., 2004). Red crystals of (I) were obtained by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-petroleum ether ($1: 2 \mathrm{v} / \mathrm{v}$) solution (m.p. $417.6-418.4 \mathrm{~K}$). Spectroscopic analysis: IR $\left(\mathrm{KBr}, v, \mathrm{~cm}^{-1}\right): 3438.84(m, \mathrm{OH}), 3101.12$ (s, CH), 1593.7 (vs, $\mathrm{O}=\mathrm{C}$), $1546.10(v s, \mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\mathrm{CDCl}_{3}, \delta$, p.p.m.): $16.254(1 \mathrm{H}, s, \mathrm{OH}), 8.731,8.149,7.881,7.440(4 \mathrm{H}$, $4 m$, pyridyl), $7.098(1 \mathrm{H}, s, \mathrm{CH}), 4.993,4.599\left(2 \mathrm{H}, 2 \mathrm{H}, 2 m, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.246$ ($5 \mathrm{H}, s, \mathrm{C}_{5} \mathrm{H}_{5}$).

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}\right)\right]} \\
& M_{r}=333.16 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=10.547(2) \AA \\
& b=12.804(3) \AA \\
& c=11.195(2) \AA \\
& \beta=104.08(3)^{\circ} \\
& V=1466.4(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Enraf-Nonius CAD4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.773, T_{\text {max }}=0.901$
2721 measured reflections
2577 independent reflections 1949 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.130$
$S=1.10$
2577 reflections
200 parameters
H -atom parameters constrained

$$
R_{\mathrm{int}}=0.045
$$

$$
\theta_{\max }=25.0^{\circ}
$$

$$
h=0 \rightarrow 12
$$

$$
k=0 \rightarrow 15
$$

$$
l=-13 \rightarrow 12
$$

3 standard reflections every 200 reflections intensity decay: 0.1%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0533 P)^{2}\right. \\
& +1.5624 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0118 \text { (16) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 11$	$1.293(5)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.415(5)$
$\mathrm{O} 2-\mathrm{C} 13$	$1.303(5)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.361(6)$
$\mathrm{C} 8-\mathrm{C} 11$	$1.450(6)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.484(6)$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 8$	$118.3(4)$	$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 12$	$122.4(4)$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 12$	$119.5(4)$	$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 14$	$114.5(4)$
$\mathrm{C} 8-\mathrm{C} 11-\mathrm{C} 12$	$122.2(4)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$123.2(4)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$121.4(4)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2O $\cdots \mathrm{O} 1$	0.82	1.76	$2.495(5)$	148
C4-H4 $\cdots \mathrm{O}^{1}$	0.98	2.57	$3.351(6)$	137
Symmetry code: (i) $-x,-y+1,-z+1$				

All H atoms were placed in geometrically idealized positions and were treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-$ $0.98 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA . U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}, \mathrm{O}\right)$.

Data collection: CAD-4 Software(Enraf-Nonius,1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

The authors thank the Nature Science Foundation of Jiangsu Province (grant No. 05KJB150151) and Yangzhou University for financial support.

References

Bell, W., Crayston, J. A., Glidewell, C., Mazid, M. A. \& Hursthouse, M. B. (1992). J. Organomet. Chem. 434, 115-121.

Doherty, S., Errington, R. J., Housley, N., Ridland, J., Clegg, W. \& Elsegood, M. R. J. (1999). Organometallics, 18, 1018-1029.

metal-organic papers

Enraf-Nonius. (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gilli, P., Bertolasi, V., Ferretti, V. \& Gilli, G. (2000). J. Am. Chem. Soc. 122, 10405-10412.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kim, J., Hwang, J. W., Kim, Y., Lee, M. H., Han, Y. \& Do, Y. (2001). J. Organomet. Chem. 620, 1-7
Li, X.-F., Dai, K., Ye, W.-P., Pan, L. \& Li, Y.-S. (2004). Organometallics, 23, 1223-1230.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Shi, Y.-C., Sui, C.-X., Song, H.-B. \& Jian, P.-M. (2005). J. Coord. Chem. 58, 363-371.
Shi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. \& Hu, X.-Y. (2004). Polyhedron, 23, 15-21.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

